20240017_0001
Open media modal

Agrégat de fibres de peptides amyloïde bêta (β-amyloïde) vu en microscopie à force atomique. Les plaques amyloïdes, associées à de nombreuses pathologies cérébrales comme la maladie d’Alzheimer, se forment suite à l’agrégation en fibres de peptides ou protéines courtes. Pouvant atteindre plusieurs microns, ces agrégats délétères sont très stables et difficile à éradiquer. Les scientifiques ont prouvé qu'ils pouvaient être détruits par des moteurs moléculaires, de petites machines à l’échelle…

Photo
20240017_0001
Agrégat de fibres β-amyloïdes, microscopie à force atomique
20240007_0001
Open media modal

Capteur infrarouge à base de nanocristaux contenant un résonateur optique. Les nanocristaux sont une nouvelle génération de semiconducteurs de taille nanométrique, dont les propriétés diffèrent drastiquement de celles d’un matériau massif. Les nanomatériaux comme le séléniure de cadmium ont ainsi la capacité de changer de couleur lorsqu’on modifie leur taille. Des scientifiques cherchent à étendre ce concept d’émission de lumière visible à la détection de lumière infrarouge, afin de développer…

Photo
20240007_0001
Capteur infrarouge à base de nanocristaux contenant un résonateur optique
20240007_0002
Open media modal

Ballon contenant des nanocristaux de séléniure de cadmium sous éclairement ultraviolet. Les nanocristaux sont une nouvelle génération de particules de taille nanométrique, capables de conduire l’électricité de manière imparfaite. Leurs propriétés diffèrent drastiquement de celles d’un matériau massif. Il est notamment possible d’ajuster la couleur d'un nanomatériau comme le séléniure de cadmium en ajustant sa taille : plus la particule est petite, plus sa couleur d’émission va vers les faibles…

Photo
20240007_0002
Ballon contenant des nanocristaux de séléniure de cadmium sous éclairement ultraviolet
20240007_0003
Open media modal

Pilulier contenant une solution de nanocristaux de séléniure de cadmium, éclairé par une lampe UV. Les nanocristaux sont une nouvelle génération de particules de taille nanométrique, capables de conduire l’électricité de manière imparfaite. Leurs propriétés diffèrent drastiquement de celles d’un matériau massif. Il est notamment possible d’ajuster la couleur d'un nanomatériau comme le séléniure de cadmium en ajustant sa taille : plus la particule est petite, plus sa couleur d’émission va vers…

Photo
20240007_0003
Pilulier contenant une solution de nanocristaux de séléniure de cadmium, éclairé par une lampe UV
20240007_0004
Open media modal

Tubes de plexiglass recouverts de solutions de nanocristaux de différentes tailles pour ajuster leur couleur, sous éclairement ultraviolet. Les nanocristaux sont une nouvelle génération de particules de taille nanométrique, capables de conduire l’électricité de manière imparfaite. Leurs propriétés diffèrent drastiquement de celles d’un matériau massif. Il est notamment possible d’ajuster la couleur d’un nanomatériau comme le séléniure de cadmium en ajustant sa taille : plus la particule est…

Photo
20240007_0004
Tubes de plexiglass recouverts de solutions de nanocristaux de différentes tailles pour ajuster leur couleur
20240007_0005
Open media modal

Manipulation d'un cryostat afin de caractériser un composant infrarouge. Les nanocristaux sont une nouvelle génération de semiconducteurs de taille nanométrique, dont les propriétés diffèrent drastiquement de celles d’un matériau massif. Les nanomatériaux comme le séléniure de cadmium ont ainsi la capacité de changer de couleur lorsqu’on modifie leur taille. Des scientifiques cherchent à étendre ce concept d’émission de lumière visible à la détection de lumière infrarouge, pour développer des…

Photo
20240007_0005
Manipulation d'un cryostat afin de caractériser un composant infrarouge
20230117_0012
Open media modal

Dépôt mince d'électrodes métalliques, ou "sputtering", sur un microréacteur plasma. Afin de faire circuler un courant électrique à travers le microréacteur et ainsi générer un plasma, il faut y déposer des électrodes métalliques, ici en utilisant la pulvérisation plasma à basse pression. Elle est réalisée dans une salle spécifique, dite salle blanche, dans laquelle n'entrent ni poussières, ni polluants. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques…

Photo
20230117_0012
Dépôt mince d'électrodes métalliques, ou "sputtering", sur un microréacteur plasma
20230117_0013
Open media modal

Dépôt mince d'électrodes métalliques, ou "sputtering", sur un microréacteur plasma. Afin de faire circuler un courant électrique à travers le microréacteur et ainsi générer un plasma, il faut y déposer des électrodes métalliques, ici en utilisant la pulvérisation plasma à basse pression. Elle est réalisée dans une salle spécifique, dite salle blanche, dans laquelle n'entrent ni poussières, ni polluants. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques…

Photo
20230117_0013
Dépôt mince d'électrodes métalliques, ou "sputtering", sur un microréacteur plasma
20230117_0014
Open media modal

Dépôt mince d'électrodes métalliques, ou "sputtering", sur un microréacteur plasma. Afin de faire circuler un courant électrique à travers le microréacteur et ainsi générer un plasma, il faut y déposer des électrodes métalliques, ici en utilisant la pulvérisation plasma à basse pression. Elle est réalisée dans une salle spécifique, dite salle blanche, dans laquelle n'entrent ni poussières, ni polluants. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques…

Photo
20230117_0014
Dépôt mince d'électrodes métalliques, ou "sputtering", sur un microréacteur plasma
20230117_0015
Open media modal

Dépôt mince d'électrodes métalliques, ou "sputtering", sur un microréacteur plasma. Afin de faire circuler un courant électrique à travers le microréacteur et ainsi générer un plasma, il faut y déposer des électrodes métalliques, ici en utilisant la pulvérisation plasma à basse pression. Elle est réalisée dans une salle spécifique, dite salle blanche, dans laquelle n'entrent ni poussières, ni polluants. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques…

Photo
20230117_0015
Dépôt mince d'électrodes métalliques, ou "sputtering", sur un microréacteur plasma
20230117_0008
Open media modal

Masque de lithographie positive pour dessiner les électrodes métalliques d'un microréacteur plasma. Afin de faire circuler un courant électrique à travers le microréacteur et ainsi générer un plasma, il faut y déposer des électrodes métalliques. Pour cela, le microréacteur est exposé aux ultraviolets avec un masque qui va dessiner la géométrie des électrodes. Une mince couche métallique est ensuite déposée par pulvérisation : elle suivra alors le dessin du masque. Cette étape de fabrication est…

Photo
20230117_0008
Masque de lithographie positive pour dessiner les électrodes métalliques d'un microréacteur plasma
20230117_0009
Open media modal

Exposition d'un microréacteur plasma aux ultraviolets avec un masque pour en appliquer la géométrie. Afin de faire circuler un courant électrique à travers le microréacteur et ainsi générer un plasma, il faut y déposer des électrodes métalliques. Pour cela, le microréacteur est exposé aux ultraviolets avec un masque qui va dessiner la géométrie des électrodes. Une mince couche métallique est ensuite déposée par pulvérisation : elle suivra alors le dessin du masque. Cette étape de fabrication…

Photo
20230117_0009
Exposition d'un microréacteur plasma aux ultraviolets avec un masque pour en appliquer la géométrie
20230117_0010
Open media modal

Exposition d'un microréacteur plasma aux ultraviolets avec un masque pour en appliquer la géométrie. Afin de faire circuler un courant électrique à travers le microréacteur et ainsi générer un plasma, il faut y déposer des électrodes métalliques. Pour cela, le microréacteur est exposé aux ultraviolets avec un masque qui va dessiner la géométrie des électrodes. Une mince couche métallique est ensuite déposée par pulvérisation : elle suivra alors le dessin du masque. Cette étape de fabrication…

Photo
20230117_0010
Exposition d'un microréacteur plasma aux ultraviolets avec un masque pour en appliquer la géométrie
20230117_0016
Open media modal

Observation des canaux d'un microréacteur plasma par microscopie optique. Afin de vérifier la qualité d'un microréacteur avant de l'utiliser, ses canaux sont vérifiés grâce à la microscopie optique. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques industriels plus sûrs, plus efficaces et respectueux de l’environnement. Pour maîtriser cette approche, les scientifiques imaginent, développent et testent des réacteurs miniatures et étudient les…

Photo
20230117_0016
Observation des canaux d'un microréacteur plasma par microscopie optique
20230117_0017
Open media modal

Observation des électrodes d'un microréacteur plasma par profilométrie optique. Afin de vérifier la qualité d'un microréacteur avant de l'utiliser, ses électrodes sont vérifiées grâce à la profilométrie optique, une technique de mesure sans contact qui cartographie leur surface. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques industriels plus sûrs, plus efficaces et respectueux de l’environnement. Pour maîtriser cette approche, les scientifiques…

Photo
20230117_0017
Observation des électrodes d'un microréacteur plasma par profilométrie optique
20230117_0018
Open media modal

Observation des électrodes d'un microréacteur plasma par profilométrie optique. Afin de vérifier la qualité d'un microréacteur avant de l'utiliser, ses électrodes sont vérifiées grâce à la profilométrie optique, une technique de mesure sans contact qui cartographie leur surface. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques industriels plus sûrs, plus efficaces et respectueux de l’environnement. Pour maîtriser cette approche, les scientifiques…

Photo
20230117_0018
Observation des électrodes d'un microréacteur plasma par profilométrie optique
20230117_0025
Open media modal

Microréacteur plasma en fonctionnement. Ici, le microréacteur est branché à un générateur électrique pour générer un plasma. Les différents fluides circulent à travers le microréacteur pour permettre à la réaction chimique d'avoir lieu. Le plasma et les réactifs chimiques liquides s'écoulent de manière continue à l'intérieur du microréacteur. Les produits de la réaction chimique sont collectés à la sortie du microréacteur, dans une petite fiole, puis seront analysés. Le plasma, qui est un état…

Photo
20230117_0025
Microréacteur plasma en fonctionnement
20230117_0026
Open media modal

Microréacteur plasma en fonctionnement. Ici, le microréacteur est branché à un générateur électrique pour générer un plasma. Les différents fluides circulent à travers le microréacteur pour permettre à la réaction chimique d'avoir lieu. Le plasma et les réactifs chimiques liquides s'écoulent de manière continue à l'intérieur du microréacteur. Les produits de la réaction chimique sont collectés à la sortie du microréacteur, dans une petite fiole, puis seront analysés. Le plasma, qui est un état…

Photo
20230117_0026
Microréacteur plasma en fonctionnement
20230117_0027
Open media modal

Microréacteur plasma en fonctionnement. Ici, le microréacteur est branché à un générateur électrique pour générer un plasma. Les différents fluides circulent à travers le microréacteur pour permettre à la réaction chimique d'avoir lieu. Le plasma et les réactifs chimiques liquides s'écoulent de manière continue à l'intérieur du microréacteur. Les produits de la réaction chimique sont collectés à la sortie du microréacteur, dans une petite fiole, puis seront analysés. Le plasma, qui est un état…

Photo
20230117_0027
Microréacteur plasma en fonctionnement
20230117_0028
Open media modal

Microréacteur plasma en fonctionnement. Ici, le microréacteur est branché à un générateur électrique pour générer un plasma. Les différents fluides circulent à travers le microréacteur pour permettre à la réaction chimique d'avoir lieu. Le plasma et les réactifs chimiques liquides s'écoulent de manière continue à l'intérieur du microréacteur. Les produits de la réaction chimique sont collectés à la sortie du microréacteur, dans une petite fiole, puis seront analysés. Le plasma, qui est un état…

Photo
20230117_0028
Microréacteur plasma en fonctionnement
20230117_0029
Open media modal

Analyse des produits chimiques synthétisés par un microréacteur plasma. Les produits des réactions chimiques collectés à la sortie des microréacteurs sont analysés. Ils sont identifiés et quantifiés, ici, grâce à la chromatographie en phase gazeuse. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques industriels plus sûrs, plus efficaces et respectueux de l’environnement. Pour maîtriser cette approche, les scientifiques imaginent, développent et testent…

Photo
20230117_0029
Analyse des produits chimiques synthétisés par un microréacteur plasma
20230117_0030
Open media modal

Analyse des produits chimiques synthétisés par un microréacteur plasma. Les produits des réactions chimiques collectés à la sortie des microréacteurs sont analysés. Ils sont identifiés et quantifiés, ici, grâce à la chromatographie en phase gazeuse. Le plasma, qui est un état énergétique de la matière, ouvre la voie à des procédés chimiques industriels plus sûrs, plus efficaces et respectueux de l’environnement. Pour maîtriser cette approche, les scientifiques imaginent, développent et testent…

Photo
20230117_0030
Analyse des produits chimiques synthétisés par un microréacteur plasma
20230091_0001
Open media modal

Déplacement de panneaux photovoltaïques usagés pour les mettre sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières…

Photo
20230091_0001
Déplacement de panneaux photovoltaïques usagés pour les mettre sur un rack
20230091_0002
Open media modal

Déplacement de panneaux photovoltaïques usagés pour les mettre sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières…

Photo
20230091_0002
Déplacement de panneaux photovoltaïques usagés pour les mettre sur un rack
20230091_0003
Open media modal

Panneau photovoltaïque usagé avant son recyclage dans l'usine ROSI Alpes. Ce panneau sera placé avec d'autres panneaux photovoltaïques usagés sur un rack pour les passer dans un four. La cuisson permet de faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes…

Photo
20230091_0003
Panneau photovoltaïque usagé avant son recyclage
20230091_0004
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0004
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0005
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0005
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0006
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0006
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0007
Open media modal

Panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l’industrie…

Photo
20230091_0007
Panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes
20230091_0008
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0008
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0009
Open media modal

Mise en place de panneaux photovoltaïques usagés sur un rack dans l'usine ROSI Alpes. Cette étape permet de les placer ensuite dans un four pour faire fondre leur enveloppe plastique et ainsi séparer les éléments qui les constituent. Ces composants pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l…

Photo
20230091_0009
Mise en place de panneaux photovoltaïques usagés sur un rack
20230091_0010
Open media modal

Panneaux photovoltaïques déplacés après un passage au four dans l'usine ROSI Alpes. La cuisson permet de faire fondre son enveloppe plastique et ainsi de séparer les éléments qui le constituent. Ces derniers pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l’industrie photovoltaïque. Ces technologies…

Photo
20230091_0010
Panneaux photovoltaïques déplacés après un passage au four dans l'usine ROSI Alpes
20230091_0011
Open media modal

Panneau photovoltaïque après un passage au four dans l'usine ROSI Alpes. La cuisson permet de faire fondre son enveloppe plastique et ainsi de séparer les éléments qui le constituent. Ces derniers pourront ensuite être triés mécaniquement et recyclés de manière plus complète et efficace. Ce processus est mis en œuvre par ROSI, entreprise française qui propose des solutions innovantes pour recycler et revaloriser les matières premières de l’industrie photovoltaïque. Ces technologies permettent…

Photo
20230091_0011
Panneau photovoltaïque après un passage au four
20230091_0012
Open media modal

Éléments dissociés, extraits d'un ancien panneau photovoltaïque usagé, dans l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération de ses matériaux. Ces derniers passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Chaque élément pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l'industrie chimique ou des batteries. Ce processus est mis en…

Photo
20230091_0012
Eléments dissociés, extraits d'un ancien panneau photovoltaïque usagé
20230091_0013
Open media modal

Éléments dissociés, extraits d'un ancien panneau photovoltaïque usagé, dans l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération de ses matériaux. Ces derniers passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Chaque élément pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l'industrie chimique ou des batteries. Ce processus est mis en…

Photo
20230091_0013
Eléments dissociés, extraits d'un ancien panneau photovoltaïque usagé
20230091_0014
Open media modal

Récupération du silicium pur, extrait d'un ancien panneau photovoltaïque usagé, avant son traitement chimique à l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération des matériaux qui le composent. Ces derniers passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Chaque élément pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l'industrie…

Photo
20230091_0014
Récupération du silicium pur extrait d'un ancien panneau photovoltaïque usagé
20230091_0015
Open media modal

Récupération du silicium pur, extrait d'un ancien panneau photovoltaïque usagé, avant son traitement chimique à l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération des matériaux qui le composent. Ces derniers passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Chaque élément pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l'industrie…

Photo
20230091_0015
Récupération du silicium pur extrait d'un ancien panneau photovoltaïque usagé
20230091_0017
Open media modal

Le Wet-bench, machine robotisée permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés à l'usine ROSI Alpes. Après avoir séparé et trié les éléments composant les panneaux solaires grâce à des procédés thermiques, le silicium est récupéré et traité dans un bain de chimie douce peu polluante pour assurer sa dissociation avec les autres métaux. Une grande majorité des éléments récupérés pourra ensuite être traité et réutilisé dans la production photovoltaïque…

Photo
20230091_0017
Le Wet-bench, machine permettant le traitement chimique du silicium issu de panneaux photovoltaïques usagés
20230091_0018
Open media modal

Composants métalliques extraits d'un ancien panneau photovoltaïque usagé, dans l'usine ROSI Alpes. La cuisson du panneau a permis la fonte de son enveloppe plastique et la récupération des matériaux qui le constituent. Ces composants passent ensuite sur des tapis vibrants qui trient les différents éléments comme le verre, le silicium pur et autres métaux. Ici, les éléments métalliques, comme l'argent, ont été récupérés. Chaque élément pourra ensuite être traité et réutilisé dans les modèles de…

Photo
20230091_0018
Composants métalliques extraits d'un ancien panneau photovoltaïque usagé
20230091_0019
Open media modal

Machine robotisée permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés à l'usine ROSI Alpes. Après avoir séparé et trié les éléments composant les panneaux solaires grâce à des procédés thermiques, le silicium est récupéré et traité dans un bain de chimie douce peu polluante pour assurer sa dissociation avec les autres métaux. Une grande majorité des éléments récupérés pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l…

Photo
20230091_0019
Machine permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés
20230091_0020
Open media modal

Machine robotisée permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés à l'usine ROSI Alpes. Après avoir séparé et trié les éléments composant les panneaux solaires grâce à des procédés thermiques, le silicium est récupéré et traité dans un bain de chimie douce peu polluante pour assurer sa dissociation avec les autres métaux. Une grande majorité des éléments récupérés pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l…

Photo
20230091_0020
Machine permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés
20230091_0021
Open media modal

Machine robotisée permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés à l'usine ROSI Alpes. Après avoir séparé et trié les éléments composant les panneaux solaires grâce à des procédés thermiques, le silicium est récupéré et traité dans un bain de chimie douce peu polluante pour assurer sa dissociation avec les autres métaux. Une grande majorité des éléments récupérés pourra ensuite être traité et réutilisé dans la production photovoltaïque, dans l…

Photo
20230091_0021
Machine permettant le traitement chimique du silicium issu d'anciens panneaux photovoltaïques usagés
20230091_0022
Open media modal

Usine ROSI Alpes à Saint-Honoré, dans les Alpes. Inaugurée en juin 2023, cette usine est la première au monde à recycler et revaloriser les matières premières de l’industrie photovoltaïque. À cette date, la méthode de recyclage la plus courante est le broyage des panneaux solaires, entraînant la perte et la dégradation des matériaux les composant. Pourtant, leur fabrication nécessite des métaux critiques, c'est-à-dire indispensables dans le développement des technologies mais menacés de pénurie…

Photo
20230091_0022
Usine ROSI Alpes à Saint-Honoré, près de Grenoble, dans les Alpes
20230091_0023
Open media modal

Usine ROSI Alpes à Saint-Honoré, dans les Alpes. Inaugurée en juin 2023, cette usine est la première au monde à recycler et revaloriser les matières premières de l’industrie photovoltaïque. À cette date, la méthode de recyclage la plus courante est le broyage des panneaux solaires, entraînant la perte et la dégradation des matériaux les composant. Pourtant, leur fabrication nécessite des métaux critiques, c'est-à-dire indispensables dans le développement des technologies mais menacés de pénurie…

Photo
20230091_0023
Usine ROSI Alpes à Saint-Honoré, près de Grenoble, dans les Alpes
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait d'Hélène Launay, Médaille de bronze 2023 du CNRS, chargée de recherche au laboratoire Bioénergétique et ingénierie des protéines (BIP), elle déchiffre les régulations impliquées dans l'assimilation du CO2 chez les microalgues. Hélène Launay est spécialisée en biochimie structurale qu'elle étudie grâce à la Résonnance magnétique nucléaire (RMN). Elle a forgé son expertise dans cette technique au cours de son doctorat, obtenu en 2011, et de ses deux postdoctorats…

Vidéo
7816
Médaille de bronze 2023 : Hélène Launay, chercheuse en biochimie
Open media modal

Uniquement disponible pour exploitation non commerciale

Fondé par Didier Bourlès, le Laboratoire national des nucléides cosmogéniques (LN2C) offre depuis 2006 à l'ensemble de la communauté française un accès direct à la mesure de la concentration de nucléides cosmogéniques dans des échantillons naturels. L'ambition : lever des verrous scientifiques sur les aléas naturels ou les variations climatiques. Les nucléides cosmogéniques, produits par l'interaction des particules du rayonnement cosmique et de certains atomes de l'environnement…

Vidéo
7822
Cristal collectif 2023 : LN2C, Laboratoire national des nucléides cosmogéniques
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait d'Alexander Kuhn, Médaille d'argent 2023 du CNRS, professeur des universités à l'École nationale supérieure de matériaux, d'agroalimentaire et de chimie et membre de l'Institut des sciences moléculaires, il conçoit notamment des systèmes (bio)électrochimiques aux propriétés nouvelles. En jouant avec la synergie entre chimie, physique et un peu de biologie, Alexander Kuhn façonne depuis l'obtention de son doctorat, en 1994 au Centre de recherche Paul Pascal, des systèmes…

Vidéo
7823
Médaille d'argent 2023 : Alexander Kuhn, enseignant-chercheur en électrochimie
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Maria Concepcion Ovin Ania, Médaille d'argent 2023 du CNRS, directrice de recherche au laboratoire Conditions extrêmes et matériaux : haute température et irradiation, spécialisée dans les carbones nanoporeux pour l'énergie et l'environnement. Recrutée au CNRS en 2017 après une riche carrière en Espagne, les travaux de Conchi Ania sont centrés sur les matériaux nanoporeux, dont les pores de dimensions nanométriques offrent des propriétés exceptionnelles d'adsorption…

Vidéo
7836
Médaille d'argent 2023 : Conchi Ania, chercheuse en chimie des matériaux
Open media modal

Uniquement disponible pour exploitation non commerciale

La « salle des collections » de l'unité Molécules de communication et adaptation des microorganismes (MCAM) a fêté ses 150 ans en 2022. Pour l'occasion, cette salle et son annexe ont été entièrement restaurées en 2021, entraînant en parallèle l'inventaire, la description et la conservation des collections présentes dans ces lieux historiques. La « salle des collections » du laboratoire de chimie de l'unité MCAM fut la salle de cours de la toute première École de chimie…

Vidéo
7841
Cristal collectif 2023 : Restauration et valorisation de la salle des collections de chimie du MNHN-MCAM
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Guillaume Lefèvre, Médaille de bronze 2023 du CNRS, chargé de recherche à l'Institute of chemistry for life and health sciences (i-CLeHS), il explore le potentiel des complexes organométalliques pour la catalyse. Après une thèse sur la catalyse avec des métaux de transition, Guillaume Lefèvre est recruté par le CNRS en 2014 pour travailler sur la valorisation du CO2 et de ses dérivés monocarbonés, comme le méthanol. Il développe et étudie de nouveaux complexes de fer…

Vidéo
7845
Médaille de bronze 2023 : Guillaume Lefèvre, chercheur en chimie organométallique

CNRS Images,

Nous mettons en images les recherches scientifiques pour contribuer à une meilleure compréhension du monde, éveiller la curiosité et susciter l'émerveillement de tous.